سایت مرجع دانلود پایان نامه -پشتیبانی 09361998026

پایان نامه تخمین عدم قطعیت در کنترل مقاوم موقعیت بازوهای رباتیک

ارسال شده در سایت پایان نامه

تخمین عدم قطعیت در کنترل مقاوم موقعیت بازوهای رباتیک

 

 

 

استاد راهنما:

استاد محمد مهدی فاتح

 

رساله جهت اخذ درجه دکتری

خرداد ماه

1394

تکه هایی از متن به عنوان نمونه :

چکیده

این پایان نامه به تخمین عدم قطعیت در کنترل مقاوم بازوهای رباتیک می‌پردازد و روش­های جدیدی مبتنی بر راهبرد کنترل ولتاژ برای تخمین عدم قطعیت ارائه می‌دهد. روش کنترل ولتاژ در مقایسه با روش مرسوم کنترل گشتاور بسیار ساده­تر است، زیرا نیازی به مدل غیر خطی پیچیده ربات ندارد. در نتیجه، حجم محاسبات کنترل کننده برای تعیین ولتاژ اعمالی به موتورها کمتر می‌شود. طبق قضیه تقریب عمومی، سیستم­های فازی و شبکه­های عصبی، قادر به تقریب توابع غیر خطی حقیقی پیوسته با دقت دلخواه هستند. باید توجه داشت که علاوه بر سیستم­های فازی، تقریبگر­های عمومی دیگری نیز مانند سری فوریه، توابع لژاندر و چند جمله­ای های چبیشف نیز وجود دارند. در این پایان نامه، از این تقریبگر­ها در کنترل مقاوم موقعیت بازوهای رباتیک استفاده می­شود. مزیت اصلی استفاده از این تقریبگرها نسبت به سیستم­های فازی و شبکه­های عصبی، کاهش فیدبک­های مورد نیاز سیستم کنترل است. تاکنون، برخی از مراجع به استفاده از سری فوریه در کنترل مقاوم بازوهای رباتیک پرداخته­اند. نشان می­دهیم که اگر مسیر­های مطلوب توابع متناوب باشند، کوچکترین مضرب مشترک (ک.م.م.) دوره تناوب اساسی آنها می­تواند معیار مناسبی برای دوره تناوب اساسی سری فوریه مورد استفاده برای تخمین عدم قطعیت­ها باشد. نوآوری دیگر این پایان­نامه ارائه یک اثبات پایداری مبتنی بر لیاپانوف برای کنترل سیستم­های غیرخطی مرتبه اول با استفاده از کنترل­کننده­های عاطفی است. برای اولین بار، قوانین کنترل ولتاژ پیشنهادی، روی یک ربات اسکارا اجرا می­شود.

کلید واژه­ها: راهبرد کنترل ولتاژ، سری فوریه، توابع لژاندر، کنترل عاطفی، موتور الکتریکی مغناطیس دائم، بازوی ماهر رباتیک.

 

 

فهرست مقالات مستخرج از رساله

مقالات ژورنالی

  • Saeed Khorashadizadeh and Mohammad Mehdi Fateh, (2014), “Robust Task-Space Control of Robot Manipulators Using Legendre Polynomials,” Nonlinear Dynamics, vol. 79 (2), pp.1151-1161. (Springer, IF=2.419).

 

  • Saeed Khorashadizadeh and Mohammad Mehdi Fateh, (2015), “Uncertainty estimation in robust tracking control of robot manipulators using Fourier series expansion,” Robotica, (Cambridge University Press, IF=0.89).

 

  • Mohammad Mehdi Fateh, Seyed Mohammad Ahmadi, and Saeed Khorashadizadeh, (2014), “Adaptive RBF network control for robot manipulators”, Journal of AI and Data Mining, 2(2), pp. 159-166.

 

  • Mohammad Mehdi Fateh, Siamak Azargoshasb, and Saeed Khorashadizadeh, (2014), “Model-free discrete control for robot manipulators using a fuzzy estimator”, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 33(3), 1051-1067. (IF=0.44).

مقالات کنفرانسی

  • Saeed Khorashadizadeh and Mohammad Mehdi Fateh, (2013) “Adaptive Fourier Series-Based Control of Electrically Driven Robot Manipulators”, The 3th International Conference on Control, Instrumation and Automation (ICCIA 2013), pp.213-218.

 

  • Saeed Khorashadizadeh, Mohammad Mehdi Fateh and Siamak Azargoshasb, (2014) “Compensating the reconstruction error of fuzzy stimator in robust model-free control of electrically driven robot manipulators,” The 14th Iranian Conference on Fuzzy Systems.

 

 

 

 

 

فهرست مطالب

فصل اول: مقدمه……………………………………………………………………………………………………………………………………………1

1-1- مروری برکارهای گذشته………………………………………………………………………………………………………2

  • راهبرد کنترل گشتاور………………………………………………………………………………………..2
  • راهبرد کنترل ولتاژ…………………………………………………………………………………………..6
  • کنترل عاطفی…………………………………………………………………………………………………14
  • اهداف مورد نظر……………………………………………………………………………………………………………..16
  • ساختار کلی رساله………………………………………………………………………………………………………….17

فصل دوم: مروری بر مدلسازی ریاضی بازوهای ماهر مکانیکی…………………………………………………………………..19

2-1-    مقدمه……………………………………………………………………………………………………………………………….20

2-2-    مدلسازی سینماتیکی………………………………………………………………………………………………………20

2-2-1-سینماتیک مستقیم………………………………………………………………………………………………….20

2-2-2-سینماتیک وارون……………………………………………………………………………………………………..28

2-2-3- سینماتیک سرعت و ماتریس ژاکوبین…………………………………………………………………..29

2-3- مدلسازی دینامیکی………………………………………………………………………………………………………………31

فصل سوم: راهبرد کنترل ولتاژ……………………………………………………………………………………………………………………35

3-1- مقدمه……………………………………………………………………………………………………………………………………36

         3-2- معادلات حرکت سیستم رباتیک ……………………………………………………………………………………….37

           3-3-قانون کنترل در راهبرد کنترل ولتاژ……………………………………………………………………………………39

         3-4- شبیه­سازی سیستم کنترل………………………………………………………………………………………………….41

3-5-         نتیجه­گیری…………………………………………………………………………………………………………………….44

فصل چهارم: تخمین عدم قطعیت با استفاده از سری فوریه………………………………………………………………………45

4-1- مقدمه………………………………………………………………………………………………………………………………………………..46

4-2- تقریب توابع با استفاده از سری فوریه……………………………………………………………………………………………….47

4-3- طراحی کنترل­کننده مقاوم مستقل از مدل……………………………………………………………………………………….48

4-3-1- قانون کنترل پیشنهادی………………………………………………………………………………………………………..49

4-3-2- تحلیل پایداری……………………………………………………………………………………………………………………..51

4-3-3- تعیین دوره تناوب اساسی سری فوریه………………………………………………………………………………….55

4-4- نتایج شبیه سازی­ها…………………………………………………………………………………………………………………………..61

4-4-1- ردگیری مسیرهای سینوسی………………………………………………………………………………………………..61

4-4-2- ردگیری مسیرهای متناوب غیر سینوسی…………………………………………………………………………….64

4-4-3- سایر دوره­های تناوب……………………………………………………………………………………………………………67

 

4-4-4- دوره­های تناوب اصم………………………………………………………………………………………………………..68

4-4-5-مسیرهای نامتناوب و اغتشاش خارجی……………………………………………………………………………69

4-4-6- مقایسه با کنترل­کننده عصبی-فازی………………………………………………………………………………….73

4-5- نتایج آزمایشگاهی……………………………………………………………………………………………………………………………..79

4-5-1- ردگیری مسیرهای سینوسی…………………………………………………………………………………………….81

4-5-2- ردگیری مسیرهای مربعی………………………………………………………………………………………………….84

4-6- مقایسه نتایج شبیه­سازی و آزمایشگاهی…………………………………………………………………………………………..86

4-7- نتیجه­گیری………………………………………………………………………………………………………………………………………..87

فصل پنجم: تخمین عدم قطعیت در فضای کار با استفاده از توابع لژاندر………………………………………………….89

5-1- مقدمه………………………………………………………………………………………………………………………………………..90

5-2- تقریب توابع با استفاده از چند­جمله­ای­های لژاندر……………………………………………………………………91

5-3- کنترل مقاوم کلاسیک در فضای کار با استفاده از راهبرد کنترل ولتاژ…………………………………..93

5-4- تخمین عدم قطعیت با استفاده از چندجمله­ای­های لژاندر………………………………………………………97

5-5- نتایج شبیه­سازی……………………………………………………………………………………………………………………….100

5-5-1- کنترل مقاوم کلاسیک……………………………………………………………………………………………………100

5-5-2- کنترل مقاوم پیشنهادی با استفاده از توابع لژاندر……………………………………………………………104

5-5-3- مقایسه با سایر کنترل­کننده­های مبتنی بر ولتاژ [112]………………………………………………..107

5-6- نتیجه­گیری…………………………………………………………………………………………………………………………………….109

فصل ششم: کنترل مقاوم سیستمهای غیرخطی مرتبه اول با استفاده از یادگیری عاطفی مغز ……………111

6-1- مقدمه……………………………………………………………………………………………………………………………………..112

6-2- مدلسازی ریاضی یادگیری عاطفی مغز………………………………………………………………………………………112

6-3- طراحی قانون کنترل و اثبات پایداری………………………………………………………………………………………..116

6-4- نتایج آزمایشگاهی………………………………………………………………………………………………………………………121

6-5- نتیجه­گیری………………………………………………………………………………………………………………………………….124

فصل هفتم: نتیجه­گیری و پیشنهادات……………………………………………………………………………………………………..127

7-1-نتیجه­گیری…………………………………………………………………………………………………………………………………128

7-2   پیشنهادات………………………………………………………………………………………………………………………………….131

فهرست منابع…………………………………………………………………………………………………………………………………………….133

پیوست الف: مدل ریاضی بازوی ماهر اسکارا…………………………………………………………………………………………….151

پیوست ب: اثبات لم­های فصل 4………………………………………………………………………………………………….155

پیوست ج: بوردها ………………………………………………………………………………………………………………………..161

 

 

فهرست اشکال

شکل2-1 ربات هنرمند………………………………………………………………………………………………………………………………21

شکل2-2 ربات اسکارا…………………………………………………………………………………………………………………………………21

شکل 2-3 دیاگرام مفصلی ربات کروی……………………………………………………………………………………………………….22

شکل 2-4 محور‌های مختصات دوران یافته……………………………………………………………………………………………..23

شکل 2-5 دستگاه مختصات انتقال یافته……………………………………………………………………………………………………24

شکل2-6 اختصاص دستگاههای مختصات به بازوی اسکارا……………………………………………………………………..27

شکل 2-7 دیاگرام مفصلی برای محاسبه سینماتیک وارون ربات اسکارا………………………………………………….29

شکل (3-1) دیاگرام کنترل ولتاژ موتور مفصل ربات………………………………………………………………………………..37

شکل (3-2) دیاگرام موتور مغناطیس دائم DC………………………………………………………………………………………41

شکل (3-3) سیستم کنترل ربات بر مبنای راهبرد کنترل ولتاژ……………………………………………………………43

شکل (3-4) خطای ردگیری سیستم کنترل با راهبرد کنترل ولتاژ……………………………………………………..43

شکل (3-5) ولتاژ موتورهای سیستم کنترل با راهبرد کنترل ولتاژ……………………………………………………..44

شکل (4-1) بلوک دیاگرام کنترل کننده مبتنی بر سری فوریه ………………………………………………………….51

شکل (4-2) خطاهای ردگیری در شبیه­سازی 4-3-4-1 …………………………………………………………………..62

شکل (4-3) همگرایی ضرایب سری فوریه در شبیه­سازی 4-3-4-1 …………………………………………………63

شکل (4-4) سیگنالهای کنترل در شبیه­سازی 4-3-4-1 …………………………………………………………………..65

شکل (4-5) عملکرد کنترل کننده پیشنهادی در ردگیری مسیر مربعی …………………………………………..65

شکل (4-6) سیگنالهای کنترل در ردگیری مسیر مربعی…………………………………………………………………….66

شکل (4-7) عملکرد ردگیری کنترل­کننده پیشنهادی برای مسیر مثلثی ………………………………………….66

شکل (4-8) سیگنالهای کنترل در ردگیری مسیر مثلثی…………………………………………………………………….67

شکل (4-9) خطاهای ردگیری در شبیه­سازی 4-3-4-3 …………………………………………………………………..70

شکل (4-10) سیگنالهای کنترل در شبیه­سازی 4-3-4-3 ……………………………………………………………..70

شکل (4-11) اغتشاش خارجی در شبیه­سازی 4-3-4-4 ………………………………………………………………….71

شکل (4-12) ردگیری مسیر نامتناوب و دفع اغتشاش خارجی…………………………………………………………..72

شکل (4-13) سیگنالهای کنترل در ردگیری مسیر نامتناوب و دفع اغتشاش خارجی………………………72

شکل (4-14) ساختار شبکه عصبی-فازی…………………………………………………………………………………………….76

شکل (4-15) بلوک دیاگرام کنترل کننده عصبی-فازی ……………………………………………………………………..77

شکل (4-16) مقایسه خطاهای ردگیری دو کنترل کننده (سری فوریه: ــــ عصبی-فازی: – –)…….78

شکل (4-17) مقایسه ولتاژ موتورها در دو کنترل کننده (سری فوریه: ـــ عصبی-فازی: – –)……….78

شکل (4-18) ستاپ آزمایشگاهی…………………………………………………………………………………………………………..80

شکل (4-19) عملکرد ردگیری کنترلر مبتنی بر سری فوریه در پیاده­سازی عملی(مسیر ربات: ــــــ مسیر مطلوب: – – – )………………………………………………………………………………………………………………………………..82

شکل (4-20) خطای ردگیری کنترلر مبتنی بر سری فوریه در پیاده­سازی عملی……………………………………83

شکل (4-21) ولتاژ موتورها در کنترلر مبتنی بر سری فوریه در پیاده­سازی عملی………………………………….83

شکل (4-22) ضرایب سری فوریه مربوط به مفصل اول در پیاده­سازی عملی…………………………………………84

شکل (4-23) ردگیری مسیرهای مربعی در پیاده­سازی عملی…………………………………………………………………85

شکل (4-24) ولتاژ موتورها برای ردگیری مسیر مربعی در پیاده­سازی عملی…………………………………………86

شکل (5-1) بلوک دیاگرام قانون کنترل (5-16)…………………………………………………………………………………….94

شکل (5-2) بهره تناسبی تعریف شده در (5-49) …………………………………………………………………………………102

شکل (5-3) ولتاژ موتورها در کنترل مقاوم کلاسیک …………………………………………………………………………….102

شکل (5-4) عملکرد ردگیری کنترل مقاوم کلاسیک در صفحه xy…………………………………………………….103

شکل (5-5) خطای ردگیری هر سه مختصات در کنترل مقاوم کلاسیک…………………………………………….103

شکل (5-6) عملکرد ردگیری کنترل کننده پیشنهادی در صفحه xy…………………………………………………104

شکل (5-7) ولتاژ موتورها در کنترل کننده پیشنهادی ………………………………………………………………………..105

شکل (5-8) خطای ردگیری هر سه مختصات در کنترل مقاوم پیشنهادی…………………………………………..106

شکل (5-9) همگرایی ضرایب لژاندر………………………………………………………………………………………………………106

شکل (5-10) عملکرد ردگیری کنترل کننده پیشنهادی در [112]…………………………………………………….108

شکل (5-11) ولتاژ موتورها در کنترل کننده پیشنهادی در [112] …………………………………………………..108

شکل (6-1) دستگاه کناری مغز [142]…………………………………………………………………………………………………113

شکل (6-2) بلوک دیاگرام کنترل­کننده عاطفی………………………………………………………………………………………116

شکل (6-3) ردگیری مسیر مطلوب برای مفصل اول……………………………………………………………………………..122

شکل (6-4) ولتاژ موتور برای مفصل اول……………………………………………………………………………………………….122

شکل (6-5) ردگیری مسیر مطلوب برای مفصل دوم…………………………………………………………………………….123

شکل (6-6) ولتاژ موتور برای مفصل دوم………………………………………………………………………………………………..124

شکل (6-7) ردگیری مسیر مطلوب برای مفصل سوم…………………………………………………………………………….125

شکل (6-8) ولتاژ موتور برای مفصل دوم…………………………………………………………………………………………………125

 

 

 

 

 

فهرست جداول

 

جدول 2-1 جدول دناویت هارتنبرگ برای ربات اسکارا……………………………………………………………………………28

جدول (3-1) پارامترهای موتور………………………………………………………………………………………………………………….42

جدول (3-2) پارامترهای دینامیکی ربات…………………………………………………………………………………………………..42

 

 برای دانلود متن کامل پایان نامه اینجا کلیک کنید.

 

مطالب مشابه را هم ببینید

141985615752731

فایل مورد نظر خودتان را پیدا نکردید ؟ نگران نباشید . این صفحه را نبندید ! سایت ما حاوی حجم عظیمی از پایان نامه ، تحقیق ، پروژه و مقالات دانشگاهی در رشته های مختلف است. مطالب مشابه را هم ببینید یا اینکه برای یافتن فایل مورد نظر کافیست از قسمت جستجو استفاده کنید. یا از منوی بالای سایت رشته مورد نظر خود را انتخاب کنید و همه فایل های رشته خودتان را ببینید فروش آرشیو پایان نامه روی دی وی دی

aca@

academicbooks@

پایان نامه بررسی رابطه استراتژی‌های رقابتی و بسته‌بندی کالاها
پایان نامه تاثیر بازی های آموزشی برخلاقیت کودکان پیش دبستان سنین ۴تا۶سال
پایان نامه با موضوع نقش مالکیت نهادی به عنوان یکی دیگر ازمکانیزم¬های حاکمیت شرکت
پایان نامه عملکرد حافظه فوری چهره‌ها در بین زنان و مردان
دانلود پایان نامه ارشد روانشناسی رابطه جهت گیری هدف و خود تنظیمی